

MySQL Optimization

Tips and Tricks from the MySQL class

Thanks To Dyn, Inc

 Cole's day job is at Dynamic Network Services,
Inc (http://www.dynamicnetworkservices.com/)

 Got to go to Sun's MySQL Optimization class
 Did a presentation on some of the things

learned for coworkers
 Was given permission to give the same

presentation for LUG groups.

http://www.dynamicnetworkservices.com/

Topics of Discussion

 General tips/tricks
 Data Types
 Indexes
 General Server Settings
 MyISAM vs InnoDB
 MyISAM
 InnoDB

Next Topic

General Tips and Tricks

General tips and tricks

This all applies to 5.0, 5.1 – may not apply to 4.1
Recommend 5.1 for new installations
Version 4.0 EOL'd, 4.1 likely to be EOL'd by end
of year

Client safety trick

 i-am-a-dummy in .my.cnf, under [client]
 Prevents updates/deletes without a where
 Only 1000 rows returned from any query, unless

limit by is specified
 Can also be specified as the far less amusing ”safe-

updates”

Faster Dumping/Loading of Tables

Store and load data in tab delimited format
 SELECT * FROM table_name INTO
OUTFILE '/path/to/file'

 LOAD DATA INFILE '/path/to/file'
INTO TABLE table_name

Next Topic

Data Types

Help Choosing Data Types

 Requires a table to already be populated
 Do a: SELECT <field(s) or *> FROM
table PROCEDURE ANALYSE()

 Won't work if the table is too big (takes too
much memory)

 Won't work with i-am-a-dummy turned on (row
limit prevents it)

Fixing Misconceptions

 enums and sets are well behaved now (and
more efficient for lookups than char/varchar(1))

 Using smaller int size for primary key is a
lookup speed win (not just data size difference)

Other considerations

 Always use not null if possible. Helps
lookup speed and storage space

 Static width tables (char vs varchar, no text
types) are faster for lookups ... only for MyISAM

 Store ips as unsigned int
 Use inet_ntoa/inet_aton to access from libs
 IPv4 only
 Saves 11 bytes per row
 Numeric (vs string) lookups – much faster

Data compression

 Archive table engine
 Myisampack

Archive table engine

 Supports insert/select, not update/delete
 Better compression than myisampack
 Don't have to go offline to convert (ALTER
TABLE table_name ENGINE=ARCHIVE)

 Full table scans – no indexes supported
 Have to make sure it's supported/active with
SHOW ENGINES. Not activated by default in
MySQL 5.0

myisampack

 Supported for MyISAM tables only
 Have to lock table completely (better to shut

down db)
 Run shell command to pack, then another to fix

indexes
 Table becomes read only
 Indexes still work

Next Topic

Indexes

Order matters

 Index on col_a, col_b, col_c
 Will not be used by: SELECT ... WHERE
col_b = x, col_c = y

 Will be used by: SELECT ... WHERE col_a
= x, col_b = y (partial index)

 Will be used by: SELECT ... WHERE col_a
= x order by col_b (partial index)

Covering indexes

 Happens when an index covers all fields
selected as well as all fields in where clause

 Doesn't have to retrieve data – it's in the index
 If ”using index” shows up in ”Extra” field of an

explain, we're using a covering index

Index merge optimization

 Query against a single table can potentially use
multiple indexes

 Examples:
 SELECT * FROM tbl_name WHERE key1 = 10
OR key2 = 20;

 SELECT * FROM tbl_name WHERE (key1 =
10 OR key2 = 20) AND non_key=30;

 In ”Explain” output, shows up as ”index_merge”
in the ”type” column

Next Topic

General Server and Client settings

Open Tables

 show global status like 'open%tabl
%'
 open_tables – tables currently open
 opened_tables – how many times tables have been

opened

 If opened_tables is always increasing, should
probably consider upping the
table_open_cache

 show open tables

Query Cache

 Independent of storage engine
 Hash key is literal md5sum of unaltered query

so case, order, spacing are all significant
 Use of user functions or stored procedures

mean no qcache entry
 Functions like NOW(), RAND(), etc prevent

using the qcache
 Prepared statements do not go in qcache

Qcache Settings

 Query cache defaults to 'on' (query_cache_type
var) but with a 0 size (query_cache_size var) –
so no qcache by default!

 According to MySQL trainer, query_cache_size
> 128MB typically starts making qcache not as
useful

 show global variables like 'query%'

 show global status like 'qc%'

Qcache Settings cont'd

 query_cache_limit (var) – maximum size of
single result set in qcache

 query_cache_min_res_unit (var) – minimum
block size for qcache results

 qcache_free_blocks (status) – Lots means
fragmented query cache

 qcache_lowmem_prunes (status) – how many
times queries had to be removed from cache
because qcache was running out of memory

Optimizing Qcache

 flush query cache
 ”defrags” query cache
 Does not empty query cache
 Can take a few seconds to run

 reset query cache
 Empties the current query cache

Calculating qcache usage

 Compare these two:
 show global status like 'qcache_hits'
 show global status like 'com_select'

 Qcache hit rate is qcache_hits/
(qcache_hits+com_select)

Thread caching

 Each client gets a thread, there is some minor
overhead to creating a thread

 show global status like 'thread%'

 If threads_created variable increasing quickly,
try upping thread_cache_size until it is
increasing slowly or not at all

max_connections

 Default is 100
 500 – 1000 is reasonable for dedicated system
 Each connection requires file descriptor,

memory for sort buffer, join buffer, read buffer,
etc

Sort Buffer

 Per client connection
 sort_buffer_size – memory allocated per

connection (full size always allocated by each
connection)

 Used by 'order by' and 'group by' second
passes

 If data is too big for sort buffer, a disk based
sort is used

Sort Buffer cont'd

 Things to watch to help decide on proper
sort_buffer_size:
 sort_merge_passes (status): number of merge

passes performed – a higher number indicates
needing to up sort buffer

 sort_range (var) – displays sorts done using ranges
 sort_rows (var) – the number of sorted rows
 sort_scan (var) – number of sorts done by scanning

the table (bigger is bad)

Join/Read buffers

 join_buffer_size (var) – size of memory
allocated when doing joins that don't use
indexes. A well designed SQL database makes
very little use of this

 read_buffer_size (var) – Buffer for caching row
data during full table scans. Again, well
designed databases will not use this much.

Tmp tables

 Used whenever an explain mentions ”using
tmp” in the extras column, often used for group
by clauses, etc

 show global status like '%tmp%tab%'
(gives an idea how often these go to disk
instead of staying in memory)

 tmp_table_size (var) – max size of data for
memory based tmp tables. Bigger tmp tables
will go to disk

Next Topic

MyISAM vs InnoDB

MyISAM Pros/Cons

Pros
 Fast in many

scenarios
 Smaller data storage
 Easy to backup

Cons
 Data more easily

corrupted
 No ACID compliance
 Cache only stores

indexes
 Table locks

InnoDB Pros/Cons

Pros
 Row locking
 ACID compliance
 Cache holds indexes

and data

Cons
 Typically a little

slower
 More difficult to back

up
 More disk space

Index comparison

MyISAM
 B-Tree (links to data

from nodes as well as
from leaves)

 No auto balance
 optimize table

will rebalance tree
 No good way to know

when to rebalance

InnoDB
 B+Tree (links to data

from leaves only)
 Auto balances tree
 Additional automatic

hash index on
primary key

Good uses for MyISAM Tables

 Logging apps
 Read only/mostly apps
 Bulk data loads, data crunching
 Read/write with low concurrency
 Data warehouses

Good uses for InnoDB

 If reliability is required
 If consistent crash recovery and repair times

are important
 If there is a performance benefit from the

database caching writes itself (esp if there are
lots of updates in small periods of time)

 High concurrency apps
 Where foreign keys or transactions are required

Concurrent MyISAM/InnoDB use

 Making use of both MyISAM and InnoDB in a
single database is non-optimal

 They can't share cache space
 The query optimizer can get confused on joins

between tables of different engine types

Next Topic

MyISAM Optimization

Inserts into MyISAM

 Fixed row size vs variable row size
 Data stored in insertion order, except:

 When there's deleted data, leaving empty blocks
big enough to insert new row

 When using the concurrent insert facility of MyISAM

 For faster population, set session var
bulk_insert_buffer_size (defaults to 8MB), and
do inserts using multiple values in single insert
query. Also works with: LOAD DATA
INFILE ...

Concurrent inserts

 Table locks normally only allow 1 writer at a
time

 Global var concurrent_insert. Values:
 0 – (Off) Tells the server to not allow any concurrent

inserts
 1 – (Default) Enables concurrent insert for MyISAM

tables that don't have holes
 2 – Enable concurrent inserts for all MyISAM tables.

 If the table has a hole and is in use by another
thread the new row will be inserted at the end of the
table. If the table is not in use, it obtains a normal
WRITE lock and inserts the new row into the hole.

Key Cache (aka Key Buffer)

 Caches index data
 Defaults to a mere 16MB, ideal size would be

the sum of 'du *.MYI'
 show global status like
'key_read_requests' – number of requests
for index data

 show global status like 'key_reads'
– how many requests had to go to disk

 Hit rate is (requests - reads) / requests – want
this to be > 0.95 ideally

Key Cache cont'd

 Make sure you keep at least a small (non zero)
key_buffer_size, even if using primarily InnoDB
because system tables are all MyISAM

Multiple Key Caches

 Reduces key cache lock contention between
threads

 Can specify which indexes go into which
caches

 All caches share the total key_buffer_size
 Can preload indexes into a specific cache

Recommended Strategy

 For busy databases, the following is
recommended:
 ”static data” cache: about 20% of total size for

tables that are never (or rarely) modified
 ”heavy update” cache: about 20% of total size for

tables that are frequently modified and/or updated
 ”default” cache: remaining 60% to use for

everything else

 Use 'init_file' mysqld param to point at sql file
that sets up these caches, and preloads any
indexes into them

Pet Idea

An idea I'd had was to keep indexes on a ram
disk, providing the data set was small enough.
Talking with the instructor in the class, he
thought it would work.

Downside is that you have to rebuild indexes
after every reboot. For each table, have to:
 repair table <table_name> use_frm;
 check table <table_name>

Next Topic

InnoDB Optimization

Things to Know about InnoDB

 Performance improved significantly between
4.1 and 5.0

 Do not let InnoDB run out of disk space. ”Bad
things” will happen.

 Too many foreign keys can slow down a
database.

 Optimize table only really needs to be run (at
most) once a month on tables with lots of
deletes. B+Trees auto rebalance.

 Mysqldump isn't the best backup strategy
because reimport is slow

Buffer Pool

Disk
Storage

Buffer
Pool

Database
Server

Read/Write Read/Write

The In-Memory buffer pool
writes and reads data pages

from the OS

The In-Memory buffer pool
writes and reads data pages

from the DB server

Buffer Pool Setting

 Buffer pool caches data as well as indexes
 Ideally (if InnoDB exclusively) want to set

innodb_buffer_pool_size to 60% to 80% of
memory

 Don't set it so large that you start swapping

Log File Size

 Bigger means more history, so more stability
 Bigger means less checkpoint file/io
 Bigger means longer recovery time on crash
 According to optimization instructor:

 64 MB log file – recovery time ”a few minutes”
 1 GB log file – recovery time ”an hour or so”
 256 MB considered good ”middle of the road”

Log buffer

 Used to buffer writes to the InnoDB log files
(used for repairing innodb tables on crash)

 innodb_log_buffer_size – how much data can
be buffered from a single transaction before
writing to disk
 Defaults to 1MB
 Set as high as 8MB if you have large transactions

to reduce disk I/O
 4MB Seems to be good setting unless you are

using large blobs

InnoDB disk writes

 Log buffer writes to disk at COMMIT or at
checkpoint

 Buffer pool writes to disk at checkpoints
 innodb_flush_log_at_trx_commit

 0: Logs flushed about 1/second
 1: Commit initiates flush
 2: log_buffer written to file, but only fsync'd every

second

Indexes

 B+Trees where index page is (default) 16KB
 InnoDB tries to leave 1/16 of page free for

future inserts and updates
 Insertion into table in primary key order helps

this
 Random order insertion can lead to pages only

½ full (innefficient)
 If fill factor is less than ½, InnoDB tries to

contract the index tree.

InnoDB best practices

 Use short, integer primary keys
 Load/Insert data in primary key order
 Increase log file size – if log file is full, all

changes to buffer pool have to get written to
disk immediately

 Avoid large rollbacks
 Avoid mass inserts – insert data in chunks

One last thing about InnoDB

 innodb_additional_mem_pool_size
 Size of the dictionary cache for meta data about

tables. Defaults to 1MB, almost never needs to be
more than 8MB

MySQL Optimization

The End

